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Abstract
As Pacific salmon (Oncorhynchus spp.) decline across much of their range, it is impera-
tive to further develop minimally invasive tools to quantify population abundance. 
One such advancement, trans-generational genetic mark–recapture (tGMR), uses 
parentage analysis to estimate the size of wild populations. Our study examined the 
precision and accuracy of tGMR through a comparison to a traditional mark–recap-
ture estimate for Chilkat River Chinook salmon (O. tshawytscha) in Southeast Alaska. 
We examined how adult sampling location and timing impact tGMR by comparing 
estimates derived using samples collected in the lower river mainstem to those using 
samples obtained in upriver spawning tributaries. Results indicated that tGMR esti-
mates using a representative sample of mainstem adults were most concordant with, 
and 3% more precise than, the traditional mark–recapture estimate for this stock. 
Importantly, the timing and location of adult sampling were found to impact abun-
dance estimates, depending on what proportion of the population dies or moves to 
unsampled areas between downriver and upriver sampling events. Additionally, we 
identified potential sources of bias in tGMR arising from violations of key assumptions 
using a novel individual-based modeling framework, parameterized with empirical 
values from the Chilkat River. Simulations demonstrated that increased reproductive 
success and sampling selectivity of older, larger individuals, introduced negative bias 
into tGMR estimates. Our individual-based model offers a customizable and accessi-
ble method to identify and quantify these biases in tGMR applications (https://​github.​
com/​swros​enbaum/​tGMR_​simul​ations). We underscore the critical role of system-
specific sampling design considerations in ensuring the precision and accuracy of 
tGMR projects. This study validates tGMR as a potentially useful tool for improved 
population enumeration in semelparous species.
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1  |  INTRODUC TION

Anthropogenic pressures are driving declines in Pacific salmon 
(Oncorhynchus spp.) abundance across much of their range 
(Beamish, 2022; Riddell et al., 2022), negatively impacting salmon-
reliant ecosystems, cultures, and economies. Efforts to restore 
Pacific salmon populations require accurate and precise estimates 
of key demographic quantitates, such as the number of mature 
adults returning to spawn, commonly referred to as “escape-
ment”. Salmon fisheries are often managed to meet escapement 
goals, determined by state and federal agencies (Clark et al., 2006). 
Improving the reliability and efficiency of salmon escapement 
enumeration methods will aid sustainable management of Pacific 
salmon populations.

Mark–recapture experiments, which are commonly used for 
fishery management (Adkison,  2022), traditionally rely on phys-
ically tagging individuals for population abundance estimation 
(Pradel,  1996). While these methods can provide reliable abun-
dance estimates under specific conditions, meeting necessary as-
sumptions is challenging, often resulting in reduced precision of 
abundance estimates (Roff, 1973). Notably, physical tags may be 
lost or affect individual behavior, leading to potentially misleading 
estimates (Seber & Felton, 1981). Failure to identify recaptured in-
dividuals can lead to an over-estimation of abundance, further im-
periling declining populations by enabling over-harvest. Innovations 
in tagging methodology are therefore beneficial for remedying 
these deficiencies.

Recent years have seen a growing interest in molecular ap-
plications of the mark–recapture framework, broadly known as 
close-kin mark–recapture (CKMR) (Bravington et al., 2016). CKMR 
uses multi-locus genotypes to mark individuals, and subsequent 
sampling of the close kin of marked individuals are treated as “re-
capture” events. Because the CKMR framework does not require 
physical tags or repeated sampling of individuals, it reduces sam-
pling invasiveness while increasing efficiency. CKMR estimators 
frequently produce population estimates with higher precision than 
conventional abundance monitoring techniques (e.g., traditional 
mark–recapture and redd count expansion) for a broad range of iter-
oparous marine (Bravington et al., 2016; Delaval et al., 2023; Hillary 
et  al., 2018; Patterson et  al., 2022) and freshwater (Marcy-Quay 
et  al., 2020; Prystupa et  al., 2021; Ruzzante et  al., 2019; Wacker 
et al., 2021) fishes.

Trans-generational genetic mark–recapture (tGMR) is a spe-
cific application of CKMR designed for enumerating semelparous 
species, such as Pacific salmon. Within the tGMR framework, the 
initial sampling event comprises genetic sampling of spawning 
adults, and the second sampling event involves genetic sampling of 
potential offspring (Rawding et  al.,  2014). A distinct advantage of 
tGMR lies in its ability to “tag” numerous offspring by genotyping 
only a comparatively small number of adults, thereby increasing 
precision through a greater number of recaptures. However, ro-
bust inference from mark–recapture estimates is contingent upon 
meeting or accounting for model assumptions (Seber, 1982). While 

tGMR and traditional mark–recapture assumptions are nearly iden-
tical (Peterson et al., 2023), methods for evaluating tGMR assump-
tions are not well-developed, given that the availability of offspring 
for recapture is mediated by the reproductive success of adults. 
Specifically, the assumptions of (1) equal probability of capture 
within the first sampling event and (2) a closed population between 
sampling events may be violated when enumerating Pacific salmon 
(Rawding et al., 2014; Small et al., 2020) because sampling selectivity 
of adults may covary with reproductive success.

tGMR estimates could be biased if there are conditions that 
jointly influence the probability of certain adults and their offspring 
being captured (i.e., violating assumption 1). There are several as-
pects of Pacific salmon life history and common sampling tech-
niques that could lead to these biases. For example, age, body size, 
and sampling selectivity are correlated in most salmonids and are 
often important determinants of reproductive success (reviewed in 
Koch & Narum, 2021). Thus, it is important to evaluate potential bi-
ases in tGMR estimates by examining the influence of age and size 
on variability in reproductive success and sampling selectivity.

Another factor complicating tGMR estimation is the biological 
complexity of freshwater migration and the potential for loss of 
adults between sampling events, violating assumption 2. Chinook 
salmon handled in mark–recapture or telemetry studies may enter 
rivers but later move back into the saltwater habitat, becoming 
vulnerable to marine sources of mortality including harvest (Sethi 
& Tanner, 2014). Additionally, prespawn mortality of adult salmon 
can occur within freshwater habitats (Bowerman et al., 2016), and 
mature adults can migrate to unsampled spawning habitat within 
a watershed. Past tGMR studies were limited to collecting adult 
tissue samples (“marks”) from carcasses only encountered in the 
upstream tributary habitat (Rawding et al., 2014; Small et al., 2020; 
Whitmore,  2016). However, by sampling mature adults both ini-
tially in the lower mainstem river and later in the upriver tributary 
habitats, separate tGMR estimates can be calculated, potentially 
allowing one to estimate rates of loss between mainstem and 
spawning reaches.

Individual-based models are a powerful tool for examining pop-
ulation dynamics of Pacific salmon (Lin et al., 2017; May et al., 2023; 
Reed et al., 2011; Yeakel et al., 2018). Simulation models parameter-
ized with empirical data have proved particularly useful for explor-
ing emergent properties of life-history dynamics that are difficult 
to measure in natural systems (Berdahl et  al., 2018). Recent mod-
eling work has broadly highlighted the importance of accounting 
for variation in life-history traits and experimental design when im-
plementing CKMR (Waples & Feutry, 2022). Developing a flexible 
and user-friendly simulation framework to quantify bias specifically 
associated with violations of tGMR assumptions could help guide fu-
ture tGMR applications.

The present study aimed to evaluate the suitability of tGMR 
methods for escapement estimation by exploring how differences 
in adult sampling can lead to bias. To meet this goal, we conducted 
a case study on Chinook salmon (O. tshawytscha) returning to the 
Chilkat River, Alaska, in 2020 with the following objectives: (1) 
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compare abundance estimates and their precision derived from 
tGMR with traditional mark–recapture; (2) investigate the effect 
of variation in reproductive success and adult sampling selectiv-
ity on tGMR abundance estimates (assumption 1 violations); and 
(3) explore the effect of adult sampling location and timing on 
tGMR abundance estimates (assumption 2 violations). To achieve 
these objectives, we calculated tGMR abundance estimates using 
adults sampled in both the lower mainstem river during initial 
freshwater migration and later in upriver tributaries during spawn-
ing. We then designed an individual-based simulation framework 
for examining sources of bias in tGMR applications, which can 
be used in other semelparous species and systems to evaluate 
the impact of assumption violations (https://​github.​com/​swros​
enbaum/​tGMR_​simul​ations). tGMR may provide a more efficient 
and less invasive tool to enumerate adult salmon populations and 
could offer increased precision when compared with traditional 
mark–recapture methods. By addressing key knowledge gaps, 
we aimed to assess the reliability of extending tGMR across the 
range of semelparous salmon for improved enumeration of these 
iconic species.

2  |  METHODS

2.1  |  Study system

In 2020, a tGMR experiment was conducted on Chinook salmon 
returning to the Chilkat River, located near Haines, AK (Figure 1a). 
The Chilkat River is the third largest producer of Chinook salmon 
in Southeast Alaska (McPherson et  al.,  2003) and is an exploita-
tion rate and escapement indicator stock monitored by the Pacific 
Salmon Commission under the Pacific Salmon Treaty (Chinook 
Technical Committee, 2023). The Chilkat River Chinook salmon 
stock is critical to subsistence fishers in the region, who catch as 
much as 17% of the total Chilkat River Chinook salmon harvest in 
some years. The Chilkat River Chinook salmon stock only reached its 
escapement goal once during 2012–2017, resulting in its designation 
as a “stock of management concern” by the Alaska Department of 
Fish and Game (ADF&G) in 2017 (Lum & Fair, 2018). Following this 
designation, the estimated 2018 escapement was the lowest in the 
history of the time series. Due to this population's decline and sub-
sequent ADF&G management designation, the subsistence fishery 

F I G U R E  1 (a) Map of the Chilkat River watershed near Haines, AK. Chinook salmon were sampled in the mainstem (orange) and 
tributaries (blue). Sampling areas with a dashed red border denote locations where both adult and juvenile Chinook salmon were collected. 
Areas without the dashed red border indcate that only adults were sampled. (b) Diagram of a traditional mark–recapture program used to 
estimate the escapement of Chilkat River Chinook salmon in 2020. (c) Diagram of the trans-generational genetic mark–recapture (tGMR) 
framework used to estimate escapement of Chilkat River Chinook salmon in 2020, created with BioRe​nder.​com.

https://github.com/swrosenbaum/tGMR_simulations
https://github.com/swrosenbaum/tGMR_simulations
http://biorender.com
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for Chilkat River Chinook salmon has been closed since 2017 (Elliott 
& Peterson, 2022). In an era of declining salmon populations and 
decreasing budgets for management agencies, fewer resources are 
available for monitoring activities, and managers may implement 
precautionary approaches by further reducing the harvest.

The Chilkat River Chinook salmon stock is currently monitored 
through a long-term traditional mark–recapture project occurring 
annually since 1991 (Ericksen & McPherson,  2004), making it an 
excellent system in which to evaluate tGMR methods. The existing 
traditional mark–recapture project utilizes multiple gears to capture 
fish in both the lower mainstem river during freshwater migration 
(adult event 1; fishwheels and drift gillnets) and upriver tributary 
sampling on spawning grounds (adult event 2; rod and reel, sein-
ing, and/or carcass sampling). The combination of sampling gear 
and their associated biases is discussed below and has been imple-
mented by ADF&G to estimate the abundance of large adult Chinook 
salmon ≥ age 4 (1.2 in European notation, Koo, 1955). The success-
ful application of tGMR for estimating the escapement of Chilkat 
River Chinook salmon may allow extension of this method to other 
Alaskan salmon stocks that currently lack intensive monitoring pro-
grams for more precise escapement estimation.

2.2  |  Sampling

Elliott and Peterson  (2022) estimated the abundance of returning 
Chinook salmon (≥  age 4; 1.2 in European notation) entering the 
Chilkat River in 2020 using a traditional two-sample mark–recapture 
study for a closed population (Seber, 1982). Returning adult Chinook 
salmon were captured during freshwater migration in June and July 
using fishwheels and drift gillnets (7 ½ inch mesh) during event 1 in 
the lower mainstem of the Chilkat River and marked with Floy T-
bar tags (Figure 1b). Use of fishwheels (selective for smaller, younger 
fish) and drift gillnets (selective for larger, older fish) helped ensure 
that a representative sample of all adult size and age classes was 
collected (Elliott, 2022). Event 2 sampling occurred during August 
in the three major spawning tributaries of the upper Chilkat River 
using rod and reel, dip nets, short tangle nets, beach seines, and car-
cass surveys. Potential biases and sources of errors were evaluated 
using the methods outlined in Elliott  (2022). Abundance of adult 
Chinook salmon (excluding age-3 males, 1.1, or “jacks”) was esti-
mated using Chapman's modification of Petersen's mark–recapture 
method (Chapman, 1951). Jacks were excluded from the traditional 
estimate as the capture rate for these younger, smaller individuals 
on the spawning grounds during the adult event 2 sampling was in-
sufficient for robust estimation of this age-class (proportion sam-
pled = 0.01). We used the results of this traditional mark–recapture 
effort to compare the precision and agreement of our tGMR case 
study detailed below.

Tissue samples were collected from the adults sampled as part 
of the traditional mark–recapture study (adult events 1 and 2; 
Elliott,  2022). Both events were treated as ‘marks’ for the tGMR 

method. Pelvic fin tissue samples were collected and dried on 
Whatman paper to preserve DNA. Additional metadata were re-
corded for each individual, including body length (mid eye to tail 
fork), sex, sample date, sample location, and age from scale samples 
(Peterson et al., 2023).

Juvenile tissue samples were collected in the fall of 2021 from 
fall parr rearing in the Chilkat River using the methods described 
in Elliott and Peterson (2022). These samples represent our second 
sampling event in the tGMR experiment (hereafter ‘captures’). Parr 
were sampled using a stratified systematic sampling design, with 
samples collected continuously throughout September and October, 
across the mainstem and two of the three primary spawning tribu-
taries of the Chilkat River using baited minnow traps (Figure 1c). As 
an alternative to fin clipping parr Chinook salmon, tissue samples 
were collected non-lethally using OmniSwabs (Qiagen, Whatman 
FTA), which were used to collect DNA from external fish mucus 
in a minimally invasive manner. OmniSwabs were preserved dry in 
2-mL cryovials filled with silica desiccant beads to preserve DNA. 
We recorded additional metadata for each individual, including body 
length (fork length), sample date, and sample location.

2.3  |  Molecular protocol

Genetic analysis was conducted at the ADF&G Gene Conservation 
Laboratory in Anchorage, AK. Following the methods outlined 
in Peterson et  al.  (2023), we extracted genomic DNA from adult 
pelvic fin samples and parr OmniSwabs swabs separately using 
NucleoSpin® Tissue Kits (Macherey–Nagel). We genotyped each 
sample using two different methods: (1) Genotyping-in-Thousands 
by sequencing (GT-seq; Campbell et  al.,  2015) for 299 single-
nucleotide polymorphism (SNP) genetic markers in the 299 SNP 
v3.0 GT-seq panel developed by the Columbia River Inter-tribal 
Fish Commission Hagerman Genetics Laboratory (Hess et al., 2014; 
Appendix  S1) and (2) polymerase chain reaction (PCR) fragment 
analysis for five multi-plexed microsatellite loci from the Genetic 
Analysis of Pacific Salmon (GAPS) panel (Moran et al., 2013; Seeb 
et al., 2007; Appendix S1).

GT-seq SNP libraries were sequenced on an Illumina NextSeq 
500 with single-end 150 base-pair reads. Individual genotypes were 
called using GTscore (https://​github.​com/​gjmck​inney/​​GTscore), a 
custom GT-seq genotype-calling pipeline that uses sequence match-
ing to quantify allelic count and ratios for each marker to infer the 
genotype (McKinney et al., 2020). We then imported our genotype 
data into the ADF&G database LOKI. SNPs in the GT-seq panel were 
removed from use in downstream analyses based on their perfor-
mance in the Southeast Alaska Chinook salmon genetic baseline 
(Shedd & Gilk-Baumer, 2021). Briefly, Shedd and Gilk-Baumer (2021) 
excluded loci if (1) visual examination of allelic ratio plots indicated 
non-singleton allelic ratios (i.e., diverged duplicate or duplicated 
loci), (2) loci failed to conform to Hardy–Weinberg expectations 
(HWE), and (3) if pairs of loci were in linkage disequilibrium (LD).

https://github.com/gjmckinney/GTscore
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Five of thirteen microsatellite loci from the GAPS panel 
(Omm1080, Ots213, Ots201b, Ssa408uos, and Ots9) were amplified 
in a single, multiplexed PCR reaction following methods described 
in Seeb et  al.  (2007). PCR products were visualized using a 3730 
capillary DNA analyzer (Applied Biosystems). Genotypes were 
scored manually with GeneMapper software (version 4.0, Applied 
Biosystems) and then imported into the ADF&G database LOKI.

To identify laboratory errors and quantify the genotyping error 
rate for use in downstream parentage analyses, 8% of sampled indi-
viduals were re-extracted and assayed for the same set of markers 
described above. The discrepancy rate, which reflects DNA ex-
traction, assay plate, and genotyping errors, was calculated as the 
number of conflicting genotypes divided by the total number of gen-
otypes compared. The discrepancy rate was then divided by 2 to 
give the genotyping error rate.

Following procedures described in Shedd et  al.  (2022), we 
adapted custom scripts (https://​github.​com/​krshe​dd/​GCL-​R-​
Scripts) to further filter our genotype data using the programming 
language R (R Core Team, 2023). These scripts removed individ-
uals missing 20% or more of their genotypes, duplicate individ-
uals identified as sharing at least 95% of their genotypes, and 
potentially contaminated individuals identified by excessively het-
erozygous SNP genotypes (defined by a cutoff of 1.5 times the 
interquartile range). These steps were intended to reduce qual-
ity issues resulting from low-grade DNA, duplicate sampling, and 
contamination.

2.4  |  tGMR abundance estimation

To determine kinship relationships among adults and juveniles, the 
parentage analysis program COLONY was used to reconstruct a 
one-generation pedigree (version 2.0.6.8) (Wang & Santure, 2009). 
COLONY is a full probability pedigree reconstruction software that 
uses maximum likelihood to reconstruct full- and half-sibling fam-
ily groups among juveniles and assigns parents to family groups. 
Additionally, COLONY infers genotypes of unsampled parents 
through information of sibling relationships among juveniles. 
Reconstructing unsampled parental genotypes allows for puta-
tive identification of the total number of reproductively successful 
adults, both sampled and unsampled. Simulations indicated a large 
number of polymorphic markers (several hundred) are necessary 
for valid inference of unsampled parents when using prior versions 
of COLONY (version 2.0.6.1) (Whitmore,  2016). These inferred 
parental quantities are necessary for the hypergeometric imple-
mentation of tGMR (described below). We decided to not use sex 
data as an input to COLONY as non-lethal identification of sex in 
adult salmon is error-prone (Chapell, 2014), especially in the lower 
river mainstem, and the genotyping panel used in these analyses 
lacks a reliable sex marker. We assumed male and female polygamy 
without inbreeding. All COLONY input parameters are provided in 
Table S1. To assess the potential influence of en route loss of adults 

(from here on referred to as “dropout”) on tGMR abundance es-
timates, we ran COLONY on three separate datasets to identify 
pedigree relationships between (1) all adults and all juveniles; (2) 
adults sampled in the lower mainstem river and all juveniles; and 
(3) adults sampled in the upriver tributaries and all juveniles. Prior 
to each of the three COLONY runs, we identified and removed any 
duplicate individuals (including adult recaptures when analyzing all 
adults) (Table S2).

Abundance estimates were derived from pedigree outputs from 
COLONY using both the binomial and hypergeometric tGMR mod-
els described by Rawding et al.  (2014) and later adjusted by Small 
et  al.  (2020) and Peterson et  al.  (2023). Briefly, the binomial esti-
mator allows sampling with replacement and estimates the adult 
population size (Nbin) from the number of adults genotyped (marks, 
M), the number of parr genotyped multiplied by 2 (captures, C), and 
the number of POPs (recaptures, R). The number of sampled parr 
is multiplied by 2 because the parental genotype is the mark, and 
because juveniles carry genotypes from dams and sires, they have 
two opportunities to recapture marks. Under this sampling-with-
replacement framework, all juvenile data are incorporated into the 
estimator regardless of whether multiple juveniles share one or both 
parents (resampling). In other words, siblings from the same parent 
are counted as separate recaptures and represent unique POPs. On 
the other hand, the hypergeometric estimator implements sampling 
without replacement, where only the first ‘sampling’ of a parent by 
a genotyped parr is considered. This estimator relies on the number 
of unsampled parents inferred by COLONY. In this case, M is still 
the number of adults genotyped, but C is the number of unique par-
ents inferred from offspring kinship relationships, both sampled and 
unsampled, and R is the number of unique sampled parents assigned 
to at least one offspring.

Escapement estimated using Bailey's modified binomial model 
(Small et al., 2020) was

Variance was estimated using Bailey's (1951) approximation:

Escapement estimated using Chapman's modified hypergeomet-
ric model was

Variance of Nhyp was estimated as

Confidence intervals for both Nbin and Nhyp were calculated using 
a normal approximation as the number of recaptures was expected 
to be large.

(1)Nbin =
M(C + 1)

(R + 1)

(2)var
(

Nbin

)

=
M2(C + 1)(C − R)

(R+1)2(R + 2)

(3)Nhyp =
(M + 1)(C + 1)

(R + 1)
− 1

(4)var
(

Nhyp

)

=
(M + 1)(C + 1)(M − C)(C − R)

(R+1)2(R + 2)

https://github.com/krshedd/GCL-R-Scripts
https://github.com/krshedd/GCL-R-Scripts
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2.5  |  Simulations to quantify bias from 
assumption violations

2.5.1  |  Individual-based model overview

To examine the accuracy and precision of tGMR estimation under 
varying demographic and sampling scenarios, we implemented a 
paired simulation–estimation approach. Specifically, we constructed 
an individual-based simulation model of a single semelparous sal-
monid population across one generation, in which adult salmon 
were sampled as they returned to spawning grounds (marks), and 
later their juvenile offspring were sampled (captures; Figure 2). This 
model was used to examine the effect of two variables on tGMR 
abundance estimation: (1) age-specific differences in adult repro-
ductive success (PRS) and (2) age-specific differences in adult sam-
pling selectivity (Psampling), which were both vectors of age-specific 
probabilities input as initial parameters. Age-specific differences 
in reproductive success were defined as the relative probability of 
individuals of a certain age producing at least one offspring when 
compared to a different age class. Age-specific differences in adult 
sampling selectivity were defined as the relative probability of indi-
viduals of a certain age class being sampled during event 1 of tGMR 
sampling as they returned to spawning grounds. These demographic 
parameters are expected to bias tGMR estimates through their com-
bined effect on the number of recaptures identified through parent-
age analysis (Waples & Feutry, 2022). We parameterized the model 
with values from our empirical tGMR case study on Chinook salmon 
from the Chilkat River to quantify the direction and magnitude of 
bias in tGMR estimates arising from differences in age-specific re-
productive success and non-uniform event 1 (adult) sampling selec-
tivity at age.

2.6  |  Model initialization

We initialized the simulation with a known number of adults 
(Ncadults) and offspring (Ncoffspring) parameterized based on our 
case study system (Table  1). Each adult was assigned three pa-
rameter values: (1) age, (2) probability of reproductive success, 

and (3) probability of being sampled conditional on the assumed 
selectivity of the event 1 adult sampling process. First, ages (Ages) 
were assigned to individuals using a weighted draw from a vector 
of ages (3, 4, 5, or 6 years old) proportional to the observed aver-
age age composition of Chilkat River adult Chinook salmon across 
the mainstem 2020 sampling effort (Page). This initial input param-
eter determined the age structure of the returning adult popula-
tion encountered during event 1 sampling. Second, reproductive 
success probabilities for individual adults were dependent on their 
age and were assigned from a constant vector of age-specific re-
productive success probabilities (PRS), such that all individuals of 
a given age had the same probability of having offspring. There 
was no additional random variation in age-specific reproductive 
success values, although such variation could be incorporated in 
future model applications. PRS was estimated from empirical data 
from both mainstem and tributary adults as a vector of age-specific 
mean reproductive success values, where reproductive success 
was a Bernoulli variable (zero offspring or >0 offspring). Third, 
individual sampling probabilities were also dependent on age val-
ues and assigned from a vector of age-specific sampling selectiv-
ity values (Psampling). A subset of parents in the simulated spawning 
population were sampled (nadults) as they returned to hypothetical 
natal rivers, conditional on their age-specific sampling probability. 
Parents were assigned to offspring using a weighted draw of nadults 
from all possible parents in the population (Ncadults). We did not 
parameterize these values differently by sex, but this could be im-
plemented in future applications.

The value Noffspring determined the census size of parr in the next 
generation, which was held constant across simulations in this study. 
Offspring were each assigned one parent, using methods adapted 
from The Weight (Waples, 2022) by using a random draw from all 
possible parents, weighted by PRS values of parents. Then, a propor-
tion of offspring were randomly sampled from all offspring in the 
population, representing juvenile sampling. The number of offspring 
sampled was also set as an initial input parameter (noffspring). We per-
formed a hypothetical molecular pedigree reconstruction from sam-
pled parents and offspring, assuming perfect parentage assignment. 
For each unique set of input parameters, the simulation was re-run 
for 1000 iterations to quantify uncertainty.

F I G U R E  2 Schematic of our individual-
based model workflow to quantify the 
reliability of trans-generational genetic 
mark–recapture (tGMR) for Chilkat 
River Chinook salmon under varying 
demographic and sampling scenarios. 
Created with BioRe​nder.​com.

http://biorender.com
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2.7  |  Model outputs

Model outputs comprised an incomplete pedigree containing sam-
pled offspring and their assigned parent, if sampled, in addition 
to the ages of the known parents. These data were then used to 
quantify key population abundance statistics, such as the number 
of POPs and a tGMR estimate analogous to a single-sex binomial 
estimate. Mean tGMR estimates (Equation 5) and the range of abun-
dances predicted by 95% of the simulations were quantified across 
1000 iterations per simulation. By not accounting for sex, our model 
produces tGMR estimates that do not directly follow the currently 
established binomial or hypergeometric tGMR frameworks. Our 
simplified approach assumed equal sex ratios and no variability in 
reproductive success or sampling selectivity between the sexes.

2.8  |  Model parameterization

PRS was calculated from our empirical Chilkat River case study by 
identifying the mean reproductive success for each age-class. We 
used 434 ages from scale samples collected from both the lower 
river and the upstream tributaries from the case study system, and 
we used only these 434 individuals with known ages for reproduc-
tive success analysis (Figure S1).

Psampling was also calculated from the case study data using 
the 434 adults with known ages from scale age analysis. We first 

estimated the “true” age structure of the population using adults 
sampled from the lower mainstem. As discussed previously, adults 
sampled in the lower mainstem river are thought to provide the most 
accurate representation of the population's age structure due to the 
use of fishwheels and gillnets with differing selectivity. Next, the 
relative selectivity for the upriver tributary sampling event was es-
timated by calculating the age structure within tributary adults by 
dividing the number of adults of a given age within the tributary by 
the “true” age structure calculated from the mainstem adults. Finally, 
we standardized selectivity within the tributary by dividing the rela-
tive age structure for the tributary sampling event by the sum of the 
relative age structure for the tributary sampling event.

2.9  |  Asymptotic reproductive success and 
sampling selectivity (violating assumption 1)

To examine how age-specific differences in reproductive success 
and sampling selectivity influence the accuracy and precision of 
tGMR estimation, we parameterized our model with a range of val-
ues for the age-specific vectors PRS and Psampling. To explore a range 
of possible scenarios in which reproductive success or selectivity of 
adult sampling varied with age, we generated values for these pa-
rameters from a logistic function (Equation 6), where the slope of the 
relationship between reproductive success or sampling selectivity 
and age was determined by a slope variable (�), and the a50 param-
eter was fixed at the mean of observed ages (4.5).

(5)AveragedModel Estimate =

(

mean
(

nadult

)

×
(

mean
(

noffspring

))

+ 1)
)

(mean(POPs) + 1)

(6)PRS or Psampling for a given � scenario = 1 + e
(−1∗�(age−a50))−1

Argument Definition Example values

Ncadults Adult census size 3702

Ncoffspring Offspring census size 480,000

nadults Adult sample size 581

noffspring Offspring sample size 682

Ages Adult ages 3, 4, 5, 6

Page Adult age structure probability 0.1, 0.14, 0.64, 0.12

PRS Age-specific reproductive success probability 0.07, 0.17, 0.28, 0.38

Psampling Age-specific sampling probability 0.03, 0.30, 0.38, 0.29

Pdropout Age-specific probability of removal of 
individuals from the population between 
mainstem and tributary sampling events

0.05

Proportiondropout Proportion of adults that are randomly removed 
from the population between simulated 
mainstem and tributary sampling events

0.30

Iterations Number of iterations performed for each unique 
combination of input parameters

1000

Scenario Scenario identifier 1

�RS Slope of a logistic function predicting age-
specific probabilities of having offspring

−3, −2, −1, 0, 1, 2, 3

�sampling Slope of a logistic function predicting age-
specific probabilities of being sampled

−3, −2, −1, 0, 1, 2, 3

TA B L E  1 Input paramters and example 
values for individual-based simulations of 
Chilkat River Chinook salmon.
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We scaled � continuously across the values −3 to 3, which en-
compasses a range of plausible life history patterns of these traits 
for many salmonids and drew Psampling and PRS values across the 
scope of � values. For each � value, the corresponding PRS and 
Psampling vectors were used as simulation inputs while holding all 
other input parameters constant. PRS and Psampling were examined 
separately, varying only one parameter at a time while holding the 
other constant at values of 0.07, 0.17, 0.28, and 0.38 for PRS and 
0.10, 0.40, 0.70, or 0.10 for Psampling. The constant values reflect 
estimated quantities from the combined mainstem and tributary 
Chilkat River adult sampling events. Each � scenario was evalu-
ated across 1000 model iterations for each set of PRS and Psampling 
values separately, with among-iteration differences arising from 
random variation in which: (1) individual adults were captured 
during event 1; (2) individual adults produced offspring; and (3) 
individual offspring were sampled during event 2. The model out-
puts from these iterations quantified the range of bias in tGMR 
estimates resulting from variation in reproductive success-at-age 
and selectivity-at-age predictions. Bias was calculated as the dif-
ference between the averaged point estimate across the 1000 
iterations and the “true” input Ncadults value, divided by Ncadults 
(Equation 7).

2.10  |  Comparison of mainstem vs tributary tGMR 
estimates (violating assumption 2)

To examine how adult sampling location and timing of capture may 
impact tGMR estimates, we compared hypergeometric tGMR esti-
mates inferred based on three adult Chinook collections: (1) lower 
mainstem Chilkat River adults sampled in June and July; (2) upriver 
tributary adults sampled in August; and (3) adults from both sam-
pling events, combined. We used separately reconstructed pedi-
grees for these three collections. The resulting hypergeometric 
tGMR estimates and their confidence intervals (calculated using a 
normal approximation) were then compared. Hypergeometric es-
timates were used as opposed to binomial estimates because the 
hypergeometric model is more robust to violations of assuming 
an equal probability of capture during the adult sampling event 
(Rawding et  al.,  2014; Small et  al.,  2020). The hypergeometric 
model is generally more robust in salmonid systems, as the sam-
pling without replacement framework buffers against heterogene-
ity in reproductive success, which may lead to violations of this 
core assumption (Small et al., 2020).

Differences in tGMR estimates between lower mainstem and 
upriver tributary samples could result from violations of assump-
tions in either estimate or the loss of adults from the population 
during freshwater migration. We defined dropout as the number 
of adults that may be sampled in the lower mainstem river but 

are subsequently unable to be sampled in the upriver tributar-
ies for any reason that would violate the assumption of a closed 
population, such as movement out of the study area or acciden-
tal capture mortality. The potential influence of adult dropout on 
tGMR abundance estimation was examined with our individual-
based modeling framework, which assumes that assumptions are 
otherwise met for both estimates. Nine simulation scenarios were 
implemented with varying rates of dropout from 0% to 40%, in 
increments of 5%, based on a range thought to encompass a plau-
sible set of values likely to occur in Alaska watersheds (Richards 
et  al.,  2017). Input Psampling values for the lower mainstem and 
upriver tributary simulation scenarios were re-calculated sepa-
rately for each traditional adult sampling event/gear type in the 
same manner described in the “Model Parameterization” section. 
These re-calculations were performed to better reflect the selec-
tivity conditions occurring during these discrete sampling periods 
(Table  2; Figure S2), improving our ability to compare simulated 
and empirical results. Model outputs (e.g., mean tGMR estimates) 
were then compared to the empirical hypergeometric mainstem 
and tributary tGMR estimates.

3  |  RESULTS

3.1  |  Genotyping

The average genotyping success rate across all adult fish using GT-
seq was 99.70%. The average genotyping success rate across all ju-
veniles using GT-seq was 98.23%. There were 41 of the 641 adults 
and seven of the 700 parr that had contamination scores deemed 
too high to allow for accurate microsatellite genotyping. The entire 
multiplex of five microsatellite loci were retained for analyses; how-
ever, 26 of the 299 SNPs were dropped due to sequencing issues 
(non-singleton allelic ratios), 11 SNPs were dropped due to violations 
of HWE, and eight SNPs were dropped due to LD with other SNPs 
(Shedd & Gilk-Baumer, 2021). Our final genotyping panel consisted 
of 259 loci (254 SNPs and five microsatellites).

We removed 10 individuals from analyses who were miss-
ing greater than or equal to 20% of their genotypes (Dann et al., 
2012). Furthermore, we removed 20 duplicated fish from our 
study. Most of these duplicates were recaptured adults that had 
been sampled during both adult sampling occasions (mainstem 

(7)Bias =

(

AveragedModel Estimate − Ncadults
)

Ncadults

TA B L E  2 Age structure and selectivity for adult Chinook salmon, 
separated by adult age-class, across lower mainstem and upriver 
tributary sampling efforts.

Parameter Age 3 Age 4 Age 5 Age 6

Mainstem Age Structure 18% 12% 60% 10%

Mainstem Selectivity 18% 12% 60% 10%

Tributary Age Structure 1% 16% 69% 14%

Tributary Selectivity 1% 34% 29% 36%
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and tributary projects). We removed 46 outliers that fell outside 
the 1.5 interquartile range of individual heterozygosity. These 
individuals were likely excessively heterozygous because of con-
tamination. The final dataset considered in all subsequent anal-
yses (Table S2) included 583 adults (sample locations described 
in Table S3) and 682 juvenile Chinook salmon (sample locations 
described in Table S4).

3.2  |  Traditional and tGMR abundance estimates

Elliott and Peterson (2022) estimated the 2020 escapement of non-
jack Chilkat River Chinook salmon (≥age 4) to be 3769 fish (95% CI: 
2726 – 4812; Figure 3; Table 3).

COLONY identified 237 POPs, 148 unique sampled parents, 
and 745 total inferred parents from within the complete sample 
of 583 adults and 682 juvenile Chinook salmon. The 583 adult 
genotypes were considered the marks in both the binomial (with 
replacement) and hypergeometric (without replacement) estima-
tors (Table 3). The captures in the binomial model were the 682 
juveniles genotyped multiplied by 2 (each offspring has two po-
tential parents), and the recaptures in the binomial model were 
the 237 POPs. The 745 unique parents inferred from the offspring 
using COLONY were considered the captures for the hypergeo-
metric model, and the 148 unique sampled parents assigned to the 
offspring were the recaptures in the hypergeometric model. The 
escapement estimate calculated with the binomial model using all 
sampled adults was 3344 fish (95% CI: 2958 – 3729). Using the 
hypergeometric model while including all adults, we estimated the 
escapement to be 2923 spawners (95% CI: 2562–3284; Figure 3; 
Table 3).

3.3  |  Simulations to quantify bias from 
assumption violations

3.3.1  | Model parameterization

The mean probability of reproductive success at a given age (PRS) 
values was 0.07 for age−3 adults, 0.17 for age-4 adults, 0.28 for 
age-5 adults, and 0.38 for age-6 adults (Figure S1). The calculated 
age structures and selectivity for each adult sampling event are pre-
sented in Table 2 and Figure S2.

3.3.2  |  Asymptotic reproductive success (violating 
assumption 1)

We investigated how variation in age-specific reproductive suc-
cess influenced the magnitude and direction of bias in tGMR 
abundance estimation. Bias (i.e., the difference between model-
estimates and the true adult run size (Ncadults); Equation  7) in-
creased as reproductive success-at-age decreased. For example, 
in simulations testing the most extreme decreasing age-specific 
reproductive success (slope � = −3), the averaged estimate was 
positively biased by 33% (Figure 4b). In contrast, bias was close to 
0 (0.1%) when reproductive success was constant across ages (� 
= 0). However, bias became more negative as age-specific repro-
ductive success increased. For example, in the most extreme case 
of increasing reproductive success-at-age (� = 3), the averaged 
point estimate was biased by −10%. Notably, in scenarios with in-
creasing reproductive success-at-age, bias appears to asymptote 
near −10%. The variability in bias among simulations decreased as 
� became increasingly positive (i.e., greater reproductive success 

F I G U R E  3 Estimated number of 
returning adults (escapement; y-axis) from 
four different estimation methods (x-axis) 
of adult Chilkat River Chinook salmon. 
Estimation methods include a traditional 
mark–recapture survey (left), which 
we compare to three hypergeometric 
tGMR estimates (right), quantified using 
samples collected on the river mainstem, 
tributaries, or both. Estimates are 
bounded by 95% confidence intervals. 
Icons created with BioRe​nder.​com.

http://biorender.com
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at older ages). In contrast, bias did not appear to asymptote with 
decreasing reproductive success-at-age. The range of bias ob-
served in 95% of simulation iterations for a given � is represented 

by the gray shaded area in Figure 4b. Chinook salmon reproductive 
success is positively associated with age (Koch & Narum, 2021), 
indicating that the scenarios simulating decreasing age-specific 

TA B L E  3 Comparison of traditional and trans-generational genetic mark–recapture (tGMR) estimators for Chilkat River Chinook salmon.

Estimator M C R Estimate 95% CI CV (%)

Traditional Mark-Recapture (adults ≥ age 4) n/a n/a n/a 3769 2726–4812 14

Hypergeometric tGMR (all adults) 583 745 148 2923 2562–3284 6

Hypergeometric tGMR (mainstem adults) 295 705 56 3665 2852–4478 11

Hypergeometric tGMR (tributary adults) 306 721 96 2284 1936–2632 8

Binomial tGMR (all adults) 583 1364 237 3344 2958–3729 6

Binomial tGMR (mainstem adults) 295 1364 83 4794 3806–5781 11

Binomial tGMR (tributary adults) 306 1364 165 2516 2159–2874 7

Note: The traditional mark–recapture estimate is provisional, based on mark (M), capture (C), and recapture (R) values not currently being published 
(Elliott & Peterson, 2022).

F I G U R E  4 (a) Example scenarios varying the slope variable (�) to quantify reproductive success and selectivity probabilities (y-axis) for 
different ages (x-axis) of Chilkat River Chinook salmon (Equation 7 in the text). (b) Expected bias (y-axis) in trans-generational genetic mark–
recapture (tGMR) estimates resulting from age-specific differrences (x-axis) in reproductive success (left) and sampling selectivity (right). 
The shaded area indicates the range of bias predicted by 95% of simulations. The red dashed line represents zero bias. (c) Simulated average 
tGMR estimates, using a single-sex binomial framework, and the 95% range of abundances predicted across 1000 iterations for each � 
scenario. The red dashed line represents the true simulated population size.
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reproductive success (� = −3, � = −2, � = −1) are unlikely to occur 
in natural systems. However, we include these scenarios as some 
semelparous fishes may demonstrate this life history pattern, and 
it is therefore useful to fully understand the range of possible ef-
fects driven by variable age-specific reproductive success in dif-
ferent systems.

3.3.3  |  Asymptotic adult sampling selectivity 
(violating assumption 1)

We also investigated how variation in age-specific sampling selectiv-
ity influenced the magnitude and direction of bias in tGMR abundance 
estimation (Figure 4). Bias increased as selectivity-at-age decreased. 
In simulations with the most extreme decreasing selectivity-at-age 
(� = −3), the averaged point estimate was positively biased by 37%. 
However, bias was nearly 0 (0.2%) when selectivity was constant 
across ages (� = 0). Bias became more negative as selectivity-at-age 
increased. Under the most extreme case of increasing selectivity-at-
age (� = 3), the averaged point estimate was biased by −13%. While 
bias appeared to increase severely and continuously with decreasing 
selectivity-at-age, under increasing selectivity-at-age, bias appeared 
to asymptote negatively at −13%. The variability in bias for � = 3 de-
creased to nearly 0.

3.4  |  Comparison of mainstem vs tributary tGMR 
estimates (violating assumption 2)

Using 295 returning adult Chinook salmon sampled in the lower 
mainstem of the Chilkat River in June of 2020 and 682 parr collected 
in the fall of 2021, COLONY identified 56 unique adult parents as-
signed to parr offspring and inferred 705 total unique successfully 
reproducing adults. These quantities produced a hypergeometric 

tGMR estimate of 3665 adults (95% CI: 2852 – 4479) with a CV of 
11% (Table 3), based on event 1 adult sampling in the lower mainstem 
river. Using the 306 adults sampled in upriver spawning tributaries 
in August of 2020 and all 682 sampled parr, COLONY identified 96 
unique adult parents assigned to parr offspring and inferred 721 
total unique successfully reproducing adults. These quantities pro-
duced a hypergeometric tGMR estimate of 2284 adults (95% CI: 
1936–2632) with a CV of 8%, based on adult event 2 sampling in the 
spawning tributaries.

We evaluated how varying levels of dropout between adult sam-
pling locations (lower river mainstem vs upriver tributary spawning 
grounds) may influence tGMR estimates. As the percentage of adult 
dropout increased across simulations, the average estimate based 
on upriver tributary adult sampling, and the range of abundances 
predicted by 95% of simulations, decreased (Table S5, Figure 5). For 
example, at 0% dropout, the average abundance estimate was 3283 
fish, while at 40% dropout, the average abundance estimate was 
1978. Notably, vectors of age-specific sampling selectivity values 
(Psampling) used to parameterize the scenarios examining the influ-
ence of dropout were calculated from the empirical case study data 
separately for mainstem Psampling = [0.18, 0.12, 0.60, and 0.10] and 
tributary habitats Psampling = [0.01, 0.34, 0.29, and 0.36]. The simu-
lated differences observed in scenarios in which Proportiondropout 
was held at 0% for both lower mainstem river and upriver tributary 
sampling locations (Figure  6, left panel) are attributable to differ-
ences in Psampling. The difference between these estimates was 144 
fish (Figure 6, left panel; calculated from Table S5), which was insuf-
ficient to explain the empirically observed difference in abundance 
estimates between the mainstem and tributary habitats (1381 fish, 
Figure 6 right panel, calculated from Table 3). The simulation sce-
nario with a 30% dropout rate (Figure  6, middle panel) produced 
an average estimate (2281 fish; 95% predicted range: 1855–2706), 
which aligned well with the empirical hypergeometric tGMR esti-
mator calculated using only tributary adults (2284 fish; 95% CI: 

F I G U R E  5 Simulated escapement (y-axis) for Chilkat River Chinook salmon using a single-sex binomial trans-generational genetic mark–
recapture (tGMR) estimate paramterized with varying rates of dropout (x-axis) between the mainstem and tributary sampling areas from 0% 
to 40%. Error bars indicate the 95% range of abundances predicted across 1000 iterations for each dropout scenario. We compare these 
dropout scenarios to our empirical escapement estimate (red dashed line), quantified using a hypergeometric tGMR approach on adults 
sampled in the upriver spawning tributaries.
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1936–2632; Table  3 and Table  S3). This simulated exploration of 
varying dropout rates and selectivity differences between adult 
sampling locations explores one potential mechanism underpinning 
the differences we observed between our mainstem and tributary 
empirical tGMR estimates.

4  |  DISCUSSION

We used tGMR to estimate the escapement of Chilkat River Chinook 
salmon during the 2020 season and developed a simulation frame-
work to evaluate potential biases arising from adult sampling. Our 
findings suggest tGMR can produce estimates concordant with 
traditional mark–recapture while providing increased precision, 
particularly when using adults representatively sampled in the main-
stem habitat. Prior tGMR applications have similarly observed in-
creased precision with tGMR estimates in comparison to traditional 
methods (Rawding et al., 2014; Small et al., 2020; Whitmore, 2016), 
which arises in part from the high recapture rates afforded by genet-
ically sampling adults via their offspring. A carefully designed, rep-
resentative adult sampling program is crucial for avoiding violations 
of key tGMR assumptions (e.g., (1) assuming an equal probability of 
adult capture and (2) assuming a closed population), and we provide 
empirical and simulated evidence of bias that can be driven by (1) 
age-specific co-occurring differences in both reproductive success 
and sampling selectivity and (2) adult dropout between sample sites. 
Motivated by previous efforts to describe potential biases associated 
with POP-based abundance estimates (Waples & Feutry, 2022), we 
leveraged parameters from our Chilkat River case study to develop 

an individual-based model to simulate the expected direction and 
magnitude of bias that may be encountered in tGMR applications. 
Through evaluation of our findings, we address key uncertainties in 
the tGMR framework and highlight circumstances that may benefit 
from adopting tGMR for salmon abundance estimation.

4.1  |  Estimate evaluation

We compared six tGMR estimates – three hypergeometric and 
three binomial estimates – to our reference abundance estimate, 
the traditional mark–recapture project. The hypergeometric esti-
mate using mainstem adults was most concordant with the tradi-
tional mark–recapture estimate, yet the tGMR estimate had greater 
precision. It should be noted that the traditional mark–recapture 
project estimates the escapement of Chinook salmon ages ≥4 in 
the Chilkat River, while the tGMR application estimates the escape-
ment of all age-classes, including jacks (age-3 males). Jacks were es-
timated to comprise 18% of the mainstem escapement, suggesting 
that if the traditional mark–recapture project accounted for jacks, 
our reference estimate would shift upward by 18%. Subsequently, 
the mainstem tGMR estimate would then be underestimating the 
escapement, which may be partially explained by our simulation 
findings that suggest tGMR will be biased between −10% and −13% 
when both reproductive success and adult sampling selectivity in-
crease with age. We observed increased reproductive success with 
age in the Chilkat River, and despite the use of multiple gear types, 
it is possible that the sampling effort was still biased regarding age, 
size, and reproductive success.

F I G U R E  6 Simulated escapement (y-axes) of Chilkat River Chinook salmon comparing 0% dropout (left) and 30% dropout scenarios 
(middle) to empirical hypergeometric mainstem and tributary estimates (right), while accounting for differences in age composition and 
selectivity. Error bars for simulations indicate the 95% range of abundances predicted across 1000 iterations for each scenario; error bars for 
empirical estimates indicate 95% confidence intervals.
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The binomial tGMR estimate using adults collected in the 
mainstem showed less agreement with the traditional estimate 
than the hypergeometric counterpart. This departure can likely 
be attributed to the binomial estimator being less robust to as-
sumption violations and more prone to biases as a result of fol-
lowing sampling with replacement (Rawding et  al.,  2014; Small 
et  al.,  2020). Considering these observed differences within our 
case study and results from past tGMR projects, we caution tGMR 
users from relying on the binomial estimator. Instead, it is prefer-
able to identify an informative panel of genomic markers for the 
target population to confidently infer unsampled parents during 
parentage analysis so that the hypergeometric framework may 
be reliably utilized. The marker panel used here may have led to 
imperfectly inferred unsampled parents, as evidenced by differ-
ences in captures, ‘C’, across our three hypergeometric estimates 
(705–745 inferred unsampled parents; Table 3). This variation may 
be driven by the marker panel's incomplete ability to differentiate 
among pairs of unrelated individuals, half siblings, and full siblings 
(Figures S3–S5). While simulation results indicated high statistical 
power of our selected markers to accurately differentiate between 
pairs of unrelated individuals and full siblings, less power to distin-
guish between full- and half-siblings may have limited COLONY's 
ability to accurately reconstruct full- and half-sibling family groups 
(Whitmore, 2016). The hypergeometric tGMR framework can be 
strengthened by using marker panels with sufficient power to con-
fidently identify half-sibling relationships.

The tGMR estimates produced using (1) all adults sampled across 
the watershed and (2) adults only sampled in tributaries resulted 
in estimates that were less concordant to the traditional mark-
recapture estimate. These differences emphasize that location, 
timing, and representativeness of adult sampling is critical when 
conducting tGMR studies (Peterson et  al., 2023). It is known that 
tributary adult samples were not representative of all Chilkat River 
spawners, given that the distribution of samples across spawning 
tributaries varied greatly compared to previous radiotelemetry stud-
ies (Ericksen & Chapwell, 2006) and the higher sampling selectivity 
of larger, older fish. Sampling only a subset of tributary spawning 
locations violates key assumptions, casting doubt on the veracity of 
the tributary tGMR estimate.

4.2  |  Unequal probability of adult capture: 
Violating assumption 1

Covariation in reproductive success and adult sampling selectiv-
ity has the potential to violate the core tGMR assumption that all 
adults have the same probability of being sampled. Results from 
our simulations indicate that bias from violating this assumption is 
most severe and variable when both the probability of reproduc-
tive success and sampling selectivity differ with age in opposing 
directions. For example, when reproductive success increases with 
age and sampling selectivity is biased toward younger individuals 

(such as when using a fishwheel), then bias can be substantial and 
positive. However, when both reproductive success and sampling 
selectivity increase with age simultaneously, simulated bias is only 
slightly negative. Variation in bias is reduced considerably under 
these circumstances, as the expected number of POPs encoun-
tered when reproductive success and sampling selectivity simulta-
neously increase with age becomes quite consistent. When these 
traits vary in opposing directions, the expected number of en-
countered POPs ranges drastically due to random chance, which 
has been demonstrated as the primary mechanism driving bias 
variability in POP-based estimators (Waples & Feutry, 2022). The 
largely predictable and minimal nature of the bias we observed 
when these traits covary increasingly with age makes these cir-
cumstances amenable to calculating a tGMR correction factor. 
Additionally, it is these very conditions (increasing reproductive 
success and sampling selectivity with age) that are most likely to be 
encountered when enumerating salmonids. The expectation that 
older Pacific salmon are more reproductively successful than their 
younger counterparts is well-documented (Koch & Narum, 2021) 
and further supported by our results. Additionally, the most fre-
quently used gear types are biased toward selecting older, more 
reproductively successful individuals (Elliott & Peterson,  2018). 
The slight negative bias driven by these co-occurring conditions 
will likely not perturb the reliability of tGMR if identified and ac-
counted for, at least within the limited parameter settings pre-
sented in this simulation study.

4.3  |  Dropout: Violating assumption 2

An alternative explanation for the differences between the main-
stem and tributary tGMR abundance estimates is adult dropout. A 
study that applied CKMR to a population of iteroparous Atlantic 
salmon in Norway similarly found that variation in spatial and 
temporal adult sampling resulted in contrasting estimates of es-
capement (Wacker et al., 2021). Samples collected near the point 
of freshwater entry were thought to result in CKMR estimates of 
total Atlantic salmon escapement, while individuals sampled dur-
ing spawning surveys were described as producing an estimate of 
only adults that had successfully migrated to the upriver breeding 
habitat. The observed parallel differences among these CKMR and 
tGMR findings highlight that dropout throughout the adult fresh-
water migration can drive differences in kinship-based population 
estimators.

Dropout occurring during freshwater migrations will likely in-
crease as climate change and habitat degradation further reduce 
optimal conditions for the migration of spawning salmonids (von 
Biela et al., 2022). While our simulations suggest that a 30% dropout 
rate is a potential explanation for the discrepancy between empirical 
mainstem and tributary tGMR estimates, it is important to note that 
the 95% range of abundances predicted across simulations testing 
15%–40% rates of dropout also overlap with the empirical tributary 
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tGMR estimate. A previous radiotelemetry experiment conducted 
on Chilkat River Chinook salmon in 2005 found a 12% dropout rate 
(Ericksen & Chapwell, 2006), which is considerably lower than our 
point estimate for 2020. Previously, the highest recorded dropout 
rate for Chinook salmon in Southeast Alaska was 23% on the Taku 
River in 2016 (Richards et al., 2017). Further combining radiotelem-
etry and tGMR studies may provide a reliable path forward to evalu-
ate change in dropout over time.

4.4  |  Model assumptions and limitations

Our study provides an individual-based model as a tool to quantify 
and correct for violations of key tGMR assumptions. However, it 
should be emphasized that our simulation framework simplifies wild 
Pacific salmon population dynamics and makes several notable as-
sumptions that may affect the interpretation of findings. First, sex 
was not considered in our simulation framework; therefore, the 
model assumes that the focal population has an equal sex ratio and 
no variation in age-specific reproductive success or sampling se-
lectivity between sexes. These sex-based assumptions may result 
in model outputs that incorrectly estimate tGMR bias and vari-
ability. Therefore, future applications of this model should consider 
whether violations of these assumptions may influence results in 
study systems with evidence of non-equal sex ratios and sexual vari-
ation in age-specific reproductive success and sampling selectivity. 
We chose not to include sex in our model because non-lethal sex 
identification of Chilkat River Chinook salmon is error-prone, and 
we were uncertain of the validity of the sex metadata associated 
with our non-lethal adult samples. Testing the effect of sex ratios 
and variation in sex-specific parameters would be a useful exten-
sion of our framework and could be tested in a system with reliable 
sex data to improve the accuracy of future tGMR applications. To 
increase the feasibility of tGMR, we encourage the continued de-
velopment of marker panels that include sex-associated loci for ac-
curate and non-lethal sex identification among semelparous Pacific 
salmon (e.g., McKinney et al., 2020).

Our model yields an estimate that is most akin to a single-
sex binomial tGMR estimate, which may limit our ability to com-
pare simulated estimates to empirical hypergeometric estimates. 
Incorporating the hypergeometric estimator in our simulations 
would have required explicitly simulating genotypes for each in-
dividual, which was beyond the scope of this modeling exercise. 
Furthermore, the single-sex binomial estimator is likely reducing 
the simulated variation in family size compared to populations with 
discrete sexes. The binomial estimator is dependent on the total 
number of POPs, which may be underestimated when variation in 
family size is reduced. Therefore, the single-sex binomial model 
may overestimate abundance compared to a wild population with 
discrete sexes and greater variation in family size. As a result, esti-
mates of dropout calculated in this study may be inflated if fewer 
POPs are simulated than expected. Future models allowing one to 

compare binomial and hypergeometric estimators will be useful 
for resolving these uncertainties.

5  |  CONCLUSIONS

Our empirical case study of Chilkat River Chinook salmon pro-
vides support for the use of tGMR as an enumeration tool offer-
ing increased precision, accordance with traditional methods, and 
reduced handling of adult spawners. Choosing between tGMR and 
traditional mark–recapture methods requires weighing the benefits 
and costs of each method. Although hardly negligible, the costs of 
marker development and genotyping continue to decline (Meek & 
Larson, 2019), and not having to conduct a second adult sampling 
event is a significant benefit when handling stress is a major concern 
or when the study system requires expensive and challenging travel 
to remote locations. A major drawback of tGMR, however, is the delay 
between adult sampling and the availability of estimates (over a year 
in Pacific salmon applications to date, including ours). This delay pre-
cludes its use for in-season management and may delay postseason 
run reconstruction and abundance forecasts for the next season. 
Ultimately, the trade-offs between the two methods are likely to be 
case-specific, depending on sampling logistics and the information 
needs for management. Because tGMR has emerged recently, stud-
ies that compare both tGMR and traditional methods such as ours 
and others (Rawding et al., 2014; Small et al., 2020; Whitmore, 2016) 
are particularly useful for evaluating these trade-offs.

Our case study and simulation analysis aimed to illuminate un-
certainties surrounding violations of (1) the equal probability of 
capture assumption and (2) the closed population assumption. We 
assert that these two assumptions are those most likely to be vi-
olated when enumerating Pacific salmon; however, further work 
evaluating the remaining mark–recapture assumptions will con-
tinue to inform the utility of tGMR. Specifically, we recommend fu-
ture efforts investigate the relative importance of random versus 
non-random offspring sampling in a tGMR framework, as this may 
be useful for determining optimal sampling strategies required to 
achieve unbiased escapement estimates.

The individual-based model detailed here offers a simple and 
flexible framework for simulating the accuracy and precision of 
tGMR estimation across an array of demographic and sampling sce-
narios. Enumeration of spawning populations using tGMR can pro-
vide widely applicable benefits to agencies seeking to increase the 
effectiveness of escapement-based management programs, while 
reducing invasive sampling. Future efforts to enumerate salmonids 
expressing complex life histories and various population sizes should 
additionally be explored to determine tGMR's reliability for enumer-
ating a diversity of semelparous populations.
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